http://www.deonto-ethics.org/quantic/index.php?action=history&feed=atom&title=Light_invariance_principle Light invariance principle - Historique des versions 2024-11-22T13:28:44Z Historique pour cette page sur le wiki MediaWiki 1.25.2 http://www.deonto-ethics.org/quantic/index.php?title=Light_invariance_principle&diff=31&oldid=prev Jacques Lavau : Page créée avec « ===Galilean reference frames=== In classical kinematics, the total displacement x in reference frame R is the sum of the relative displacement x’ in R’ and of the dis... » 2014-11-24T19:14:12Z <p>Page créée avec « ===Galilean reference frames=== In classical kinematics, the total displacement x in reference frame R is the sum of the relative displacement x’ in R’ and of the dis... »</p> <p><b>Nouvelle page</b></p><div>===Galilean reference frames===<br /> <br /> In classical kinematics, the total displacement x in reference frame R is the sum of the relative displacement x’ in R’ and of the displacement vt of R’ relative to R at a velocity v : x = x’+vt or, equivalently, x’=x-vt. This relation is linear when the velocity v is constant, that is when the frames R and R&#039; are galilean. Time t is the same in R and R’, which is no more valid in special relativity, where t ≠ t’. The more general relationship, with four constants α, β, γ and v is :<br /> :&lt;math&gt;x&#039;=\gamma\left(x-vt\right)&lt;/math&gt;<br /> :&lt;math&gt;t&#039;=\beta\left(t+\alpha x\right)&lt;/math&gt;<br /> The Lorentz transformation becomes the Galilean one for β = γ = 1 et α = 0.<br /> <br /> ===Light invariance principle===<br /> <br /> The velocity of light is independent of the velocity of the source, as was shown by Michelson. We thus need to have x = ct if x’ = ct’. Replacing x and x&#039; in these two equations, we have<br /> :&lt;math&gt;ct&#039;=\gamma\left(c-v\right)t&lt;/math&gt;<br /> :&lt;math&gt;t&#039;=\beta\left(1+\alpha c\right)t&lt;/math&gt;<br /> Replacing t&#039; from the second equation, the first one becames<br /> :&lt;math&gt;c\beta\left(1+\alpha c\right)t=\gamma\left(c-v\right)t&lt;/math&gt;<br /> After simplification by t and dividing by cβ, one obtains :<br /> :&lt;math&gt;1+\alpha c=\frac{\gamma}{\beta}(1-\frac{v}{c}) &lt;/math&gt;<br /> <br /> ====Relativity principle====<br /> This derivation does not use the speed of light and allows therefore to separate it from the principle of relativity.<br /> The inverse transformation of<br /> :&lt;math&gt;x&#039;=\gamma\left(x-vt\right)&lt;/math&gt;<br /> :&lt;math&gt;t&#039;=\beta\left(t+\alpha x\right)&lt;/math&gt;<br /> is :<br /> :&lt;math&gt;x=\frac{1}{1-\alpha v}\left(\frac{x&#039;}{\gamma}-\frac{vt&#039;}{\beta}\right)&lt;/math&gt;<br /> :&lt;math&gt;t=\frac{1}{1-\alpha v}\left(\frac{t&#039;}{\beta}-\frac{\alpha x&#039;}{\gamma}\right)&lt;/math&gt;<br /> In accord with the principle of relativity, the expressions of x and t should write :<br /> :&lt;math&gt;x=\gamma\left(x&#039;+vt&#039;\right)&lt;/math&gt;<br /> :&lt;math&gt;t=\left(t&#039;+\alpha x&#039;\right)&lt;/math&gt;<br /> They should be identical to the original expressions except for the sign of the velocity :<br /> :&lt;math&gt;x=\frac{1}{1+\alpha v}\left(\frac{x&#039;}{\gamma}+\frac{vt&#039;}{\beta}\right)&lt;/math&gt;<br /> :&lt;math&gt;t=\frac{1}{1+\alpha v}\left(\frac{t&#039;}{\beta}-\frac{\alpha x&#039;}{\gamma}\right)&lt;/math&gt;<br /> <br /> We should then have the following identities, verified independently of x’ and t’ :<br /> :&lt;math&gt;x=\gamma\left(x&#039;+vt&#039;\right)=\frac{1}{1+\alpha v}\left(\frac{x&#039;}{\gamma}+\frac{vt&#039;}{\beta}\right)&lt;/math&gt;<br /> :&lt;math&gt;t=\left(t&#039;+\alpha x&#039;\right)=\frac{1}{1+\alpha v}\left(\frac{t&#039;}{\beta}-\frac{\alpha x&#039;}{\gamma}\right)&lt;/math&gt;<br /> This gives the following equalities :<br /> :&lt;math&gt;\beta =\gamma=\frac{1}{\sqrt{1+\alpha v}}&lt;/math&gt;<br /> <br /> ===Expression of the Lorentz transformation===<br /> Using the above relationship<br /> :&lt;math&gt;1+\alpha c=\frac{\gamma}{\beta}(1-\frac{v}{c}) &lt;/math&gt;<br /> we get :<br /> :&lt;math&gt;\alpha =-\frac{v}{c^2}&lt;/math&gt;<br /> and, finally:<br /> :&lt;math&gt;\beta =\gamma=\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}&lt;/math&gt;<br /> We have now all the four coefficients needed for the Lorentz transformation which writes in two dimensions :<br /> :&lt;math&gt; x=\frac{x&#039; + vt&#039;}{ \sqrt[]{1 -\frac{v^2}{c^2}} } &lt;/math&gt;<br /> :&lt;math&gt;t= \frac{t&#039; + \frac{vx&#039;}{c^2}}{ \sqrt[]{1 -\frac{v^2}{c^2}} } &lt;/math&gt;<br /> <br /> The inverse Lorentz transformation writes, using the Lorentz factor γ :<br /> :&lt;math&gt;x&#039;= \gamma\left(x - vt\right) &lt;/math&gt;<br /> :&lt;math&gt;t&#039;=\gamma\left(t - \frac{vx}{c^2}\right) &lt;/math&gt;<br /> <br /> These four equations are used according to the needs.</div> Jacques Lavau